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Determination of the Resonant Frequencies
in a Complex Cavity Using the Scattering

Matrix Formulation

JEFF M. NEILSON, MEMBER, IEEE, PETER E. LATHAM, MEMBER, IEEE>MALCOLM CAPLAN,

AND WESLEY G. LAWSON, MEMBER, IEEE

,4Mruct —A method for computing the resonant frequency in a complex

cavity consisting of a series of wavegnide sections is derived. The analysis

uses the scattering matrix formulation to produce an eigenvafue equation

which must be solved numerically. The technique is easily implemented

numerically and shows good agreement with experiment.

I. INTRODUCTION

F INDING the resonant frequencies and Q values in a

complex cavity is a problem of practical importance in

many applications. While finite mesh codes can be used in

the general case, there is a class of geometries that admits a

much simpler and faster solution. Namely, when the cavity

consists of a series of waveguide sections, the scattering

matrix method [1]–[6] may be applied. Such a configura-

tion is shown in Fig. l(a). The ends may be open or closed

and the waveguide shape may change from one section to

the next (e.g., circular to square to rectangular).

Our’ analysis is -restricted to transitions in which one

waveguide is wholly contained in the other; “mixed”

boundary conditions such as the one illustrated in Fig. l(b)

may be handled by placing a zero-length section of wave-

guide in the overlap region [2]. We also require that the

waveguide sidewalls be parallel to each other and perpen-

dicular to the end walls. Tapered sections can be modeled

as a series of small transitions. For simplicity we assume

that all surfaces are perfectly conducting and that the

cavity is filled with a material of a uniform dielectric

constant c and permittivity p, although the formalism

applies to more complex configurations.

An eigenvalue problem is formed by cascading the scat-

tering matrix from a given section outwards to the ends of

the complex cavity, with appropriate boundary conditions

at the ends. The eigenvalue equation is solved numerically

by searching for a complex frequency, the cavity Q being

determined by half of the ratio of the real to the imaginary
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Fig. 1. (a) A typical complex cavity. Each section has a uniform cross

section and length /J. The ends may be closed or open: in the latter
case we consider either 11 or /4 going to infimty or provide perfect

terminations. (b) “Mixed” boundary conditions are incorporated mto
our anafysis by inserting a zero section of waveguide in the region of
overlap.

part of the frequency. Alternatively, one may solve the

eigenvalue equation with the frecpency and Q fixed by

varying the cavity dimensions. If both ends of the cavity

are closed and c and p are real, only a one-dimensional

search for the real part of the frequency need be per-

formed.

In Section H vve derive the formalism used to determine

the resonant frequencies and Q ~alues of a given cavity,

and in Section III we show results obtained from a code

based on the formalism. Section IV contains our summary

and conclusions.

II. FORMALISM

Calculation of the scattering matrices is implemented by

the mode-matching technique. Details of the derivation

can be found in numerous papers [1]--[6], so we shall only

briefly outline the development here. The derivation begins

by assuming an expansion of the transverse fields E and
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Fig. 2. Defititlon ofmodemplitudes lnscatteting matrix formulation.

H in terms of the eigenmodes <, ~, of the waveguide in

region 1 as

M

,=]
(la)

(lb)

where F is the modal amplitude of the forward (propagat-

ing in the + z direction) wave, B is the amplitude of the

backward wave, and Z is the characteristic impedance (see

eq. (A6) of the Appendix). The fields in the second region

are defined similarly, being

N

E2= x (52+ BJ2)32 (2a)

(2b)
y=l\ ‘J2 ) ‘

The value of N is governed by the relative convergence

phenomenon [7], [8] and for circular waveguides is given

by the radii ratio times the value of M.

Applying continuity of tangential E and H across the

common aperture area and enforcing zero tangential elec-

tric field on the wall of the larger guide yields the follow-

ing relation between the forward and backward mode

amplitudes in the guides:

P[&’1+&]=I[E2+B21 (3a)

Z1PW2[E2 –&] = ~[f’, -Bll (3b)

where 1 is the identity matrix; { and ~ are vectors

containing the unknown mode amphtude coefficients ( F’ll

..0 FK/), (Bll . . . B~l) for regions I =1,2; ZI is an N x N

diagonal matrix of the modal impedances in region 1; and

Yz is an M x h’ diagonal matrix of the modal admittances

for region 2 ( Yz = .Z~ l). The elements of the mode cou-

pling matrix P are given by

(4)

where the integration is performed over the common aper-

ture area between the guides, and the normalization is

chosen so that ~ZJ. ~ dA = 1 and ~, = ; x <.

The voltage scattering matrix formulation (Fig. 2) for

the forward and backward waves is defined as

U@m QTcl
EL R

s;: + SL’ SL’ : 5s’ SR’
pa

s% s:
FL BR

(a)

El==El
(b)

Fig. 3, Cascading matrices: (a) original problem; (b) result from cas-

cading matrices to left and right.

where

Rearranging (3) into the scattering matrix formulation

yields

s,, = [I+ ZIP’Y2P]-1[1– Z, P’Y2P] (6a)

S12 = 2[1+ z1P~Y2P] -1z1P~Y2 (6b)

S21= 2[1+ Pz#~Y2] -lP (6c)

S22 = – [1+ PZ1PTY2] ‘1[1– PZ1P~Y2] . (6d)

To determine the resonant frequency for a given config-

uration, the scattering matrices are cascaded from the

cavity section outwards to the left and right (Fig. 3). The

boundary conditions at the ends determine the final scat-

tering matrix. For matched waveguide sections. SIL = O,

while for shorted sections Sll = – 1.

Cascading [3] the scattering matrices from both the left

and the right into the cavity section leads to the set of

equations

~R = S(FR (7a)

~== s~yL (7b)

where Sfi resulted from cascading the scattering matrices

from the cavity section to the left and Sfi is the scattering

matrix for the cascaded scattering matrices to the right.

Combining (7a) and (7b) results in the matrix equation

det(SflSfi-1) =0. (9)

The amplitude of the backward mode in the cavity section

is the eigenvector of S~Sfi with eigenvalue 1, and ~R =

S~~’. Once ~R and ~ R have been determined, the ampli-

tudes of the forward and backward waves in all sections

may be found by back-cascading the scattering matrices.

For scattering from a smaller to a larger waveguide (see

Fig. 4), the amplitude of the forward mode in the k + 1

(larger) section is obtained from (3a) and is

_k+l=(I+ sfl)-lP(I; +&)F (lo)
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Fig. 4. Calculation of field amplitudes.

where the prime indicates a change in phase given by

S~=I. exp(– P~+ll~+l)SflI. exp(-13~+11~+1)

~;= 1.exp(–/3~l~)~k

with ~ being a vector of the complex propagation con-

stants of the modes. For scattering from a larger to a

smaller waveguide the amplitude of the forward mode

obtained from (3b) is given by

1,+, = (Gsf)-lzk+,P’Yk( &Bk). (11)

The algorithm for finding the resonant frequencies of a

cylindrical cavity of arbitrary geometry modeled by a

series of sudden transitions may be summarized as follows:

1)

2)

3)

4)

Construct the frequency-independent coupling ma-

trices Pj,.

Calculate the scattering matrices at each transition

and cascade them outward from the cavity section

to form the left and the right scattering matrix.

Form the’ eigenvalue equation from the left and

right scattering matrices.

Solve the eigenvalue equation (repeating steps 2 and

3) by a two-dimensional search in complex fre-

quency or, for closed cavities and real dielectric

constant and permittivity, a one-dimensional search

in real frequency.

In practice, this method converges rapidly—generally in

less than ten iterations. The results are insensitive to the

section in which the eigenvalue equation is formed unless

one of the sections is cut off at the frequency of interest.

No spurious cavity resonances have been observed fcw

cavities with finite Q values.

III. NUMERICAL RESULTS

Using this formalism a code was written to find the

resonant frequencies and Q values in a system of cylindri-

cal cavities. Configurations applicable to gyrotron ampli-

fiers [9] and oscillators [10] were considered; these are

shown in Figs. 5 and 9 respectively. Since all cavities have

the same axis of symmetry, the coupling matrices may be

found analytically and are given in the Appendix.

Transmission measurements were used to determine the

frequency and Q of the complex cavities depicted in Fig. 5.

The experimental setup is shown in Fig. 6. The mode

converters were TEIO ~ T1311 nonresonant transitions for

the buncher cavity and TEIO - T1301 Marie transitions for

n
—— —— .—. — —.— .

E

(a)

[Wr’—.J ‘L —.d.—..~ ,
(b)

Fig. 5. Cavltles used in comparison of theory and experiment: (a)

buncher cavity: (b) output cavity.

X- Band

Oscillator
Power

Meter
Frequency

Meter

f $3
30d0 20 dB Mocle Test Mode Power

Y x
Converter Covdy Converter Meter

x

c1
Power

Meter

Fig. 6. Experimental setup for measurement of frequency and Q values

of test cavities.

FREQUENC’r’ (C+lz)

Fig. 7. Comparison between theory and experiment for transmission
measurement of buncher cavities.

the output cavity. The buncher cavity had a 1.27 cm drift

tube radius, a 4..5 cm cavity radius, and a 1.53 cm cavity

length. The theoretical and experimental TE1l X-band

transmission curves were in excellent agreement and are

shown in Fig. 7. The output cavities incorporated a simple

coupling iris to control the cavity Q and were designed

using the code to have a Q of 300 with a T13011 cavity

mode. The results of the calculation and measurements for

the cavities are listed in Table I. They are in good agree-

ment, with error in the Q calculation of less than 10
percent and calculated frequency errors less than 1 per-
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TABLE I

comparison OF THEORY AND Experiment FOR THE TEO1 OUTPUT CAVITY

Experimmt Theory

11 r2 F3 11 12 fo Q fo Q

2.1O!I 1.500 2.700 2.700 0.468 9.99 295 +11 10.01 307

2.109 1.650 2.700 2.520 1.080 10.00 285 +10 10.00 307

2.109 1.800 2.700 2.109 2.667 9.98 325 i15 10.00 302

Lengths are m cm and frequencies in GHz. Twelve modes were used m
the field expansion in section one.

Cavity Wall

w- il--- \–7–––– —–—7— —–—___r _____T
o I i 3 4

Position (cm)

Fig. 8. Calculated mode profile for output cavity.

cent. The error estimates include only the effect of an

additional coupling aperture required to inject the mi-

crowave signal. A plot of the mode profile for the first

output cavity is shown in Fig. 8.

The frequency and Q converge rapidly as the number of

modes used in the field expansion increases. Typically only

5–15 modes are required. We note that for calculation of

field amplitudes near edges many more modes are re-

quired; however, for purposes of calculation of frequency

and Q the inclusion of these modes results only in a

significant increase in computation time with no increase

in accuracy of the calculation.

The. cavity shown in Fig. 9 uses both a linear taper and

an iris to set cavity Q and mode profile. Table II shows the

results for the calculation and measurement of the cavity.

Ten steps were used to model the linear taper in the cavity

section. The agreement between measurement and calcula-

tion is again good. The calculated mode profile is depicted

in Fig. 10.

IV. SUMMARY

I-Jsing the scattering matrix formalism, we have devel-

oped a method for computing the resonant frequencies and

Q values in a complex cavity consisting of a series of
waveguides. This method is suitable for modeling both

abrupt changes in radius and smoothly varying tapers. The

formalism can easily be extended to model more com-

mon] y used cavities such as those found in klystrons and

accelerators. It is easy to implement numerically, con-

verges rapidly (many times faster than finite mesh codes),

Fig. 9. Output cavity with hnear taper.

TABLE II
COMPARISON OF THEORY AND EXPERIMENT FOR THE TE02 TAPERED CAVITY

Experiment Theory

A B c D E F G fo Q fo Q

0.54.! 3.300 1.207 1.778 0.119 1.181 1.444 27.96 450 28.01 475

Lengths are in cm and frequencies m GHz Taper angle was 0.48° and

eight modes were used in the stmight section of the cavity

In
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Fig, 10. Calculated mode profde for output cavity with linear taper

and is free of spurious solutions. Good agreement was

found between theory and experiment.

APPENDIX

EIGENMODES, WAVE IMPEDANCE, AND COUPLING

EQUATION FOR CIRCULAR WAVEGUIDE

The following definitions of the eigenmodes and wave

impedances were used in the cylindrical cavity code. MKS

units are used in all equations. TE eigenmodes for the

transverse electric fields are
—

(Al)

while the TM eigenmodes are

(A2)

where y,,,,, is the n th zero of ~,,, y,j,~ is the n th zero of J,;,

a is the cavity radius, and c., is defined as

{
1,

c=
?? 1=0

)71 2. m+O.
(A3)
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The transverse magnetic field is given by ~m. = $ X 2~..

Normalization of the TE and TM modes was chosen so the

modes are orthonormal, that is,

The propagation constant and wave impedances are

~mn=((wk’)’”
Zmn =‘1

(A4)

(AS)

(A6)

where k 2 = pecd2. The coupling coefficients for a system in

which all waveguides share the same axis of symmetry are

as follows:
TEI -+ TE2,

TEI ~ TM2,

H2mJ yn+
a2

P =–nlnz

wr+l(Yn2)(YL’ - m’)’”

(A7)

(A8)

(A9)

There is no coupling from TM modes in the smaller guide

to TE modes in the larger guide. The subscripts on a and

n refer to the guide section, al and rzl being the radius

and mode index of the smaller section. The subscript 2

applies to the larger section. Since for centered guides

there is no azimuthal mode coupling, the subscript m was

dropped where not needed in the coupling expressions.
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