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Determination of the Resonant Frequencies
in a Complex Cavity Using the Scattering
Matrix Formulation

JEFF M. NEILSON, MEMBER, 1IEEE, PETER E. LATHAM, MEMBER, IEEE, MALCOLM CAPLAN,
AND WESLEY G. LAWSON, MEMBER, IEEE

Abstract — A method for computing the resonant frequency in a complex
cavity consisting of a series of waveguide sections is derived. The analysis
uses the scattering matrix formulation to produce an eigenvalue equation
which must be solved numerically. The technique is easily implemented
numerically and shows good agreement with experiment.

I. INTRODUCTION

INDING the resonant frequencies and Q values in a

complex cavity is a problem of practical importance in
many applications. While finite mesh codes can be used in
the general case, there is a class of geometries that admits a
much simpler and faster solution. Namely, when the cavity
consists of a series of waveguide sections, the scattering
matrix method [1]-[6] may be applied. Such a configura-
tion 18 shown in Fig. 1(a). The ends may be open or closed
and the waveguide shape may change from one section to
the next (e.g., circular to square to rectangular).

Our analysis is restricted to transitions in which one
waveguide is wholly contained in the other; “mixed”
boundary conditions such as the one illustrated in Fig. 1(b)
may be handled by placing a zero-length section of wave-
guide in the overlap region [2]. We also require that the
waveguide sidewalls be parallel to each other and perpen-
dicular to the end walls. Tapered sections can be modeled
as a series of small transitions. For simplicity we assume
that all surfaces are perfectly conducting and that the
cavity is filled with a material of a uniform dielectric
constant ¢ and permittivity u, although the formalism
applies to more complex configurations.

An eigenvalue problem is formed by cascading the scat-
tering matrix from a given section outwards to the ends of
the complex cavity, with appropriate boundary conditions
at the ends. The eigenvalue equation is solved numerically
by searching for a complex frequency, the cavity Q being
determined by half of the ratio of the real to the imaginary
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Fig. 1. (a) A typical complex cavity. Each section has a uniform cross
section and length //. The ends may be closed or open: in the latter
case we consider either /! or /4 going to infimty or provide perfect
terminations. (b) “Mixed” boundary conditions are incorporated into
our analysis by nserting a zero section of waveguide in the region of
overlap.

part of the frequency. Alternatively, one may solve the
eigenvalue equation with the frequency and Q fixed by
varying the cavity dimensions. If both ends of the cavity
are closed and € and p are real, only a one-dimensional
search for the real part of the frequency need be per-
formed.

In Section II we derive the formalism used to determine
the resonant frequencies and Q values of a given cavity,
and in Section III we show results obtained from a code
based on the formalism. Section IV contains our summary
and conclusions.

II. ForMALISM

Calculation of the scattering matrices is implemented by
the mode-matching technique. Details of the derivation
can be found in numerous papers [1]--[6], so we shall only
briefly outline the development here. The derivation begins
by assuming an expansion of the transverse fields £ and
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Fig. 2. Definition of mode amplitudes 1n scattering matrix formulation.

H in terms of the eigenmodes ¢, lz of the waveguide in
region 1 as

(1a)

M
E, = Z (E1+ le)‘?zl
1=1

Fy— B\
S 1b
222 (1b)

where F is the modal amplitude of the forward (propagat-
ing in the + z direction) wave, B is the amplitude of the
backward wave, and Z is the characteristic impedance (see
eq. (A6) of the Appendix). The fields in the second region
are defined similarly, being

>

H =

Mz

=1

N

E,= Z (sz“”sz)e—;z (23)
=1

— N F2_B2 -

H,=1Y % B, (2b)
=1 2 )

The value of N is governed by the relative convergence
phenomenon [7], [8] and for circular waveguides is given
by the radii ratio times the value of M.

Applying continuity of tangential £ and H across the
common aperture area and enforcing zero tangential elec-
tric field on the wall of the larger guide yields the follow-
ing relation between the forward and backward mode
amplitudes in the guides:

P[F+ B]=I[F + B,] (3a)

Z,P"Y,[F, - B,] = I[F, - B,] (3b)

where [ is the identity matrix; F and B are vectors

containing the unknown mode amplitude coefficients ( F),

< Fep), (By -+ - By,) for regions /=1,2; Z, isan N X N

diagonal matrix of the modal impedances in region 1; and

Y, is an M X M diagonal matrix of the modal admittances

for region 2 (Y, = Z;'). The elements of the mode cou-
pling matrix P are given by

b= [ Exérdd

JI

(4)

where the integration is performed over the common aper-
ture area between the guides, and the normalization is
chosen so that fe)-e*d4=1 and h=:xe.

The voltage scattering matrix formulation (Fig. 2) for

the forward and backward waves is defined as
B=SF

(5)
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Fig. 3. Cascading matrices: (a) original problem; (b) result from cas-
cading matrices to left and right.
where
B, 5 S S
B= F= S = .
EZ fz S21 S22

Rearranging (3) into the scattering matrix formulation
yields

Sy=[1+2P"Y,P] '[I-2ZPTY,P] (6a)

S,=2[1+ZP"Y,P| 'Z,PTY, (6b)
Sy=2[1+PZ,P"y,] ‘P (6c)
Sp=—[1+PZPTY,] [1-PZPTY,].  (64)

To determine the resonant frequency for a given config-
uration, the scattering matrices are cascaded from the
cavity section outwards to the left and right (Fig. 3). The
boundary conditions at the ends determine the final scat-
tering matrix. For matched waveguide sections. S;; =0,
while for shorted sections S;; = — 1.

Cascading [3] the scattering matrices from both the left
and the right into the cavity section leads to the set of
equations

B*=S{\F"
EL:SﬁEL

(7a)
(7b)

where Sf; resulted from cascading the scattering matrices
from the cavity section to the left and S& is the scattering
matrix for the cascaded scattering matrices to the right.
Combining (7a) and (7b) results in the matrix equation

BY = SiS{iB* (8)

so that
det(SRSE—1)=0. (9)

The amplitude of the backward mode in the cavity section
is the eigenvector of Sf;SR with eigenvalue 1, and FR=
SEBR. Once FR and B have been determined, the ampli-
tudes of the forward and backward waves in all sections
may be found by back-cascading the scattering matrices.
For scattering from a smaller to a larger waveguide (see
Fig. 4), the amplitude of the forward mode in the k +1
(larger) section is obtained from (3a) and is

AN —1
Fo o =(I1+SE) "P(F/+By) (10)
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Fig. 4. Calculation of field amplitudes.

where the prime indicates a change in phase given by
S =T-exp (= Besilis) SHT-exp (= Brialisr)
F{=T-exp(-Bli) Ey
with B8 being a vector of the complex propagation con-
stants of the modes. For scattering from a larger to a
smaller waveguide the amplitude of the forward mode
obtained from (3b) is given by
N —1
Fo .= (1_ Sﬁ) Z i PTY(F{ = B,).

(11)
The algorithm for finding the resonant frequencies of a

cylindrical cavity of arbitrary geometry modeled by a
series of sudden transitions may be summarized as follows:

1) Construct the frequency-independent coupling ma-
trices P,.

2) Calculate the scattering matrices at each transition
and cascade them outward from the cavity section
to form the left and the right scattering matrix.

3) Form the eigenvalue equation from the left and
right scattering matrices.

4) Solve the eigenvalue equation (repeating steps 2 and
3) by a two-dimensional search in complex fre-
quency or, for closed cavities and real dielectric
constant and permittivity, a one-dimensional search
in real frequency.

In practice, this method converges rapidly—generally in
less than ten iterations. The results are insensitive to the
section in which the eigenvalue equation is formed unless
one of the sections is cut off at the frequency of interest.
No spurious cavity resonances have been observed for
cavities with finite Q values.

III. NUMERICAL RESULTS

Using this formalism a code was written to find the
resonant frequencies and Q values in a system of cylindri-
cal cavities. Configurations applicable to gyrotron ampli-
fiers [9] and oscillators [10] were considered; these are
shown in Figs. 5 and 9 respectively. Since all cavities have
the same axis of symmetry, the coupling matrices may be
found analytically and are given in the Appendix.

Transmission measurements were used to determine the
frequency and Q of the complex cavities depicted in Fig. 5.
The experimental setup is shown in Fig. 6. The mode
converters were TE;, — TE,; nonresonant transitions for
the buncher cavity and TE;, — TE,, Marie transitions for
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Fig. 5. Cavities used in comparson of theory and experiment: (a)
buncher cavity: (b) output cavity.
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Fig. 6. Experimental setup for measurement of frequency and @ values
of test cavities.
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Fig. 7. Comparison between theory and experiment for transmission
measurement of buncher cavities.

the output cavity. The buncher cavity had a 1.27 cm drift
tube radius, a 4.5 cm cavity radius, and a 1.53 cm cavity
length. The theoretical and experimental TE,; X-band
transmission curves were in excellent agreement and are
shown in Fig. 7. The output cavities incorporated a simple
coupling iris to control the cavity Q and were designed
using the code to have a Q of 300 with a TE;; cavity
mode. The results of the calculation and measurements for
the cavities are listed in Table 1. They are in good agree-
ment, with error in the Q calculation of less than 10
percent and calculated frequency errors less than 1 per-
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TABLE I
COMPARISON OF THEORY AND EXPERIMENT FOR THE TEj; OUTPUT CAVITY
Experiment Theory

ry ro r3 11 1y fo Q fo Q
2.109]1.500]2.700}2.700|0.468| 9.99 205 *11 10.01 307
2.109|1.65012.700|2.520{1.080}10.00| 285 *10 10.00 307
2.109(1.800(|2.700|2.109|2.667 | 9.98 325 %15 10.00 302
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Fig. 9. Output cavity with linear taper.

Lengths are 1n cm and frequencies in GHz. Twelve modes were used in  COMPARISON OF THEORY AND EXPERIMENT FOR THE TEq, TAPERED CAVITY

the field expansion in section one.
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Fig. 8. Calculated mode profile for output cavity.

cent. The error estimates include only the effect of an
additional coupling aperture required to inject the mi-
crowave signal. A plot of the mode profile for the first
output cavity is shown in Fig. 8.

The frequency and Q converge rapidly as the number of
modes used in the field expansion increases. Typically only
5-15 modes are required. We note that for calculation of
field amplitudes near edges many more modes are re-
quired; however, for purposes of calculation of frequency
and Q the inclusion of these modes results only in a
significant increase in computation time with no increase
in accuracy of the calculation.

The cavity shown in Fig. 9 uses both a linear taper and
an iris to set cavity ) and mode profile. Table II shows the
results for the calculation and measurement of the cavity.
Ten steps were used to model the linear taper in the cavity
section. The agreement between measurement and calcula-
tion is again good. The calculated mode profile is depicted
in Fig. 10.

IV. SumMaRYy

Using the scattering matrix formalism, we have devel-
oped a method for computing the resonant frequencies and
Q values in a complex cavity consisting of a series of
waveguides. This method is suitable for modeling both
abrupt changes in radius and smoothly varying tapers. The
formalism can easily be extended to model more com-
monly used cavities such as those found in klystrons and
accelerators. It is easy to implement numerically, con-
verges rapidly (many times faster than finite mesh codes),

TABLE 11
Experiment Theory
A B c D E F G fo Q fo 0
0.544(3.300{1.207§1.778(0.119(1.181|1.444(27.96 450 28.01 1475

Lengths are in cm and frequencies in GHz Taper angle was 0.48° and
eight modes were used in the straight section of the cavity
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Fig. 10. Calculated mode profile for output cavity with linear taper

and is free of spurious solutions. Good agreement was
found between theory and experiment.

APPENDIX
EIGENMODES, WAVE IMPEDANCE, AND COUPLING
EQUATION FOR CIRCULAR WAVEGUIDE

The following definitions of the eigenmodes and wave
impedances were used in the cylindrical cavity code. MKS
units are used in all equations. TE eigenmodes for the
transverse electric fields are

=

— Vim

emn =
Vo I, (vi) (vg2 — m?)?

m (Yl Yo o, ( Ymn? 5
X ——Jm(——)sm(mﬂ)er——J,}’l( )cos(mb’)ﬂ]
r a a a
(A1)
while the TM eigenmodes are
. V2
emn =
\/gymnjmﬁl(y”m)
Ymn ’Yy” n r . A~ m Ynzn r A
X[ J,,’l( )sm(mﬂ)r+—],n( )cos(mH)O]
a a r
(A2)
where v,,, is the nth zero of J,, v,,, is the nth zero of J/,

a is the cavity radius, and ¢, is defined as
c = { 1, m=0
1 2.

m#0. (A3)
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The transverse magnetic field is given by &, =ZXé,,

Normalization of the TE and TM modes was chosen so the

modes are orthonormal, that is,

[ Tt dA= 8,8, (A4)
The prdpagation constant and wave impedances are
¥ 9 1/2
ﬁmn=((—’"i) —kz) (A5)
a
%)
!B—f‘- TE
Z,,= m"B (A6)
- J mn
EE—— ™
WE

where k% = pew?. The coupling coefficients for a system in
which all waveguides share the same axis of symmetry are
as follows:

TEl g TE27
z(ﬂ)v,le’(v,fzﬂ)
a, a3
P _ )
s vy L 1 Yr;z 2 o 2 (A7)
J(v,,z)(vn1 m?) (g = m?) (7) (Z)
TE, » TM,,
a
2mJ Yo,
a,
_ A8)
nyny ’ 172 (
‘Yn2Jm+1('Yn2)(‘Y”12 - mz)
TMl - TM25
a
2](1(,, . )
a
n1n2= - : (A9)

. y 2 a 2
n 2
‘YnéJm+l(yn2) 1_(7_1) (0_1)
. ny

There is no coupling from TM modes in the smaller guide
to TE modes in the larger guide. The subscripts on a and
n refer to the guide section, a, and n, being the radius
and mode index of the smaller section. The subscript 2
applies to-the larger section. Since for centered guides
there is no azimuthal mode coupling, the subscript m was
dropped where not needed in the. coupling expressions.
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